Advanced Stamping for High Strength Steels

J.P. McGuire
Chrysler Group LLC.
Advanced Stamping Manufacturing Engineering

© 2012 Chrysler Group LLC. All Rights Reserved.
Chrysler Material Selection

Die Engineering for AHSS

Die Process

Full Cycle Simulation

Die Design for AHSS

Die Materials/Coatings

Beyond 2014

Opportunities

© 2012 Chrysler Group LLC. All Rights Reserved.
Chrysler Group Material Selection

2005 Grand Cherokee

2011 Grand Cherokee

2011 Chrysler 300

New Dodge Dart

29% HSS

50% HSS

60% HSS

68% HSS

© 2012 Chrysler Group LLC. All Rights Reserved.
50% High Strength Steel

High Strength Steel: YS > 200 MPa

© 2012 Chrysler Group LLC. All Rights Reserved.
High Strength Steel: YS > 200 MPa

© 2012 Chrysler Group LLC. All Rights Reserved.
Largest TRIP590 Application in Production

2011 Dodge Charger
BIW Material Usage

High Strength Steel: YS > 200 MPa

© 2012 Chrysler Group LLC. All Rights Reserved.
High Strength Steel:
YS > 200 MPa

© 2012 Chrysler Group LLC. All Rights Reserved.
Chrysler Material Selection

Die Engineering for AHSS

Die Process

Full Cycle Simulation

Die Design for AHSS

Die Materials/Coatings

Beyond 2014

Opportunities

© 2012 Chrysler Group LLC. All Rights Reserved.
Die Process for AHSS

Draw

Trim

Pierce/Restrike/Flange

New Methods to Control Springback

Stricter Product Radii Limits

Stricter:
- Trim Angle Standards
- Cutter Clearance
- Minimum Shear Requirements

Stricter:
- Pierce hole angle maximums
- Restrike only for qualifying surface, not “reforming”

On-going improvement working with product engineering, die shop, and stamping plant teams to develop best practice

© 2012 Chrysler Group LLC. All Rights Reserved.
Large radii

Gradual depth / LOL transition

Open walls

Bead metal on flange (utilization observation)
DP 600

Overcrown Surface Morph

Springback & compensate

Final detail panel meets GD&T tolerance

Springback & compensate

D2-14 Direct Trim, PRC pilots.

D3- Direct Trim and re-strike

Springback & compensate

D4- Direct finish trim & separate parts.

Springback & compensate

© 2012 Chrysler Group LLC. All Rights Reserved.
Negative values mean that the die surface is morphed in +Z draw axis direction.
Example. AHSS Die Design Section

- Increased Rib Thickness in Working Areas
- Enhanced Thrust Containment
- Use of Separate Details in Working Areas
- In Some Cases Heavier Duty Standard Components (i.e. punches, nitro cylinders, cams, etc.).
Table 11. Example images of linear static FEA results

<table>
<thead>
<tr>
<th>Performance Variable</th>
<th>Production Design</th>
<th>Optimized Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Stresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Von Mises stresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Stresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– handling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dodge Dart AHSS Parts

Draw Die

Trim Die

0.80 mm DP600 Floor Pans

Chrysler “A” Standard (Base Materials and Sections)

© 2012 Chrysler Group LLC. All Rights Reserved.
Dodge Dart AHSS Parts

Progressive Die

Chrysler “D” Standard

1.6 mm DP980

© 2012 Chrysler Group LLC. All Rights Reserved.
Future AHSS Die Design (Extreme Cases)

+ 2.0 mm DP 600, 780
+ 1.8 mm DP980
Sharp “V” part geometry
Coatings for Stamping Dies

Traditional Die Coatings

• Chrome Plate (Class A Panels)
• Ion Nitride (Non AHSS Inner Panels)
This condition can cause:

- Poor formability (wrinkling)
- Poor dimensional properties
- Customer quality concerns

Class A surface quality suffers, also increased potential panel scrap

Bead wear premature, causing panel run out
Coatings for Stamping Dies

New Coatings Required for AHSS

Current Chrysler Standard

- PVD – Physical Vapor Deposition
- D2 Tool Steel
- Stricter Metallurgical and Heat Treat Requirements
- Nitriding first with absence of white layer

© 2012 Chrysler Group LLC. All Rights Reserved.
Die Insert Coatings for AHSS

Physical Vapor Deposition
- **Deposition**: $T = 400-950 \, ^\circ F$
- **Cycle Time**: 6-8 hours
- **Total Process**: 3-5 Days

Chemical Vapor Deposition
- **Deposition**: $T = 1300-1900 \, ^\circ F$
- **Cycle Time**: 18 – 24 hours
- **Total Process**: 5-7 days

© 2012 Chrysler Group LLC. All Rights Reserved.
Die Insert Coatings for AHSS

CVD-TiC
0.08mm Growth

PVD-CrN
No size change

White light scanning used to verify dimensional Change

© 2012 Chrysler Group LLC. All Rights Reserved.
Chrysler is currently studying Advanced Strength Steel with better combination of Strength and Elongation.

Projects in Chrysler

Steel Technology to Reduce Material Property Variation

© 2012 Chrysler Group LLC. All Rights Reserved.
Future: Ever Improving Material Models Based on Production Data

Improved Material Property Behavior Laws

In Depth Characterization of Both Material & Die Behavior

Tensile Testing

FLC Testing

Thickness Change Influence

Material Direction Influence

Forming Speed Influence

Trimming Process Influence

Individual FLC Testing

Bend/Bend Back Influence

© 2012 Chrysler Group LLC. All Rights Reserved.
Small AHSS parts require higher tonnage than previous.

Strong Case for Larger Tonnage Presses (i.e. +3000 tons)

Lower materials utilization ($$$)

Enhanced part guidelines for press loading (improved simulation accuracy)

New Preventative Maintenance Requirements for AHSS

Part temperature

Enhanced part sensing

Decoiling/leveling/front of line

Training on new methods