Great Designs in Steel is Sponsored by:

AK Steel Corporation, ArcelorMittal Dofasco, ArcelorMittal USA, Nucor Corporation, Severstal North America and United States Steel Corporation
A/SP Lightweight Suspension
Front Lower Control Arm Design Optimization

- Objective and Scope
- Design Targets
- Development Process
- Design Proposals
- Performance
- Mass
- Manufacturing
- Cost
- Summary & Conclusions
A/SP Lightweight Suspension
Front Lower Control Arm Design
Optimization

Hannes Fuchs, Ph.D.
Multimatic Engineering
Objective & Scope

• Develop lightweight steel suspension front lower control arm (FLCA) designs:
 – functionally equivalent, but at a reduced cost relative to the baseline FLCA assembly
• Forged aluminum production OEM baseline design
• Project timing: 20 weeks proof-of-concept design*

*Designs are subjected to “typical” OEM requirements
Design Targets

- **Structural Performance**: Equal to, or exceed the baseline and OEM requirements
- **Mass**: Less than, or equal to the baseline
- **Cost**: Reduced vs. the baseline (target 30%)
- **Corrosion**: Meet OEM corrosion requirements
- **Package**: Meet available packaging constraints
Structural Performance

Static Stiffness
\[K_x \geq 2.9 \text{ kN/mm} \]
\[K_y \geq 125 \text{ kN/mm} \]

Longitudinal Strength (Buckling)
\[> 25 \text{ kN} \]

Extreme Loads
Set < 1.0 mm
Plastic Strain < 4%

Durability Life > 1.0
Mass

Handling bushing

Complete FLCA Assy
(3.07 kg)

Ball joint

Ride bushing
Package

Available package volume

- Stabilizer bar clearance zone
- Clevis clearance
- Knuckle clearance
- Rim clearance
- Tire clearance

Design environment

- Steering knuckle
- Wheel/tire envelope
- Subframe
- Subframe clevis
- FLCA
- Front of car

Design environment
Cost

• Target 30% cost reduction vs. baseline
• Estimate manufacturing costs relative to the aluminum baseline structure
• Assumptions
 – 30k, 100k, and 250k vehicles per year
 – 6 year program
Development Process

1. Concept Development - Size / Shape Optimization (stiffness)
 - Stiffness Optimization
 - Steel selection
 - Extreme Loads
 - Longitudinal Strength

2. Design Development
 - Forged
 - Sheet A
 - Sheet B

3. Manufacturing

4. Cost Assessment

Fine Tuning
- Durability
- Strength
Based on concept development size / shape optimization studies, three (3) candidate designs were selected for detailed development.
Design Proposal Comparison

Baseline
Forged AL

Machined T-pin
Machined bushing sleeve
Forged ball joint housing

Machined
Clamshell

Forged T-pin
Bushing sleeve
MIG weld
Upper & lower stampings
Forward Flange
Tube
Web
I-Beam

Forged Steel

Riveted forged ball joint housing

I-Beam
Finite element analysis (FEA) methods were used to predict the structural performance of each design.

Mass of each design was minimized while meeting the structural requirements.
Forged Designs – Materials

Baseline Design

Forged Design

6082-T6 forging

Steel washer

Steel bolt & washer

AISI 15V24 forged steel alloy

Min. 5.0 mm

Min. ~3 mm assumed

Note: Steel bolt & washer not required w/ press-on bushing

www.autosteel.org
Forged Steel Design

- Determined in the early design phase that an aggressive minimum gage target would be required (<4.5mm) to be mass competitive.

Thickness distribution for optimum stiffness:
Clamshell Design – Materials

Upper stamping**
(1.9 mm DP780)

Bushing sleeve*
(2.5 mm SAE1020 DOM)

Lower stamping**
(1.9 mm DP780)

T-pin*
(forging)

Rivets

Common ball joint*
housing
(forging)

Note: Steel bolt & washer not required w/ press-on bushing

*E-coat finish
**Hot dipped galvanized coating + E-coat
I-Beam Design - Materials

- Inboard flange - thick* (5.0 mm HSLA550)
- Inboard flange - thin* (2.2 mm DP980)
- Web* (2.3 mm DP980 web)
- Forward Flange* (2.7 mm DP780)
- Common ball joint housing* (forging)
- T-pin* (forging)
- Ball joint reinforcement** (1.5 mm HSLA550)
- Bushing sleeve* (2.5 mm SAE1020 DOM)
- Rivets
- Tube* (2.2 mm DP780)

Note: Steel bolt & washer not required w/ press-on bushing

* E-coat finish
** Hot dipped galvanized coating + E-coat
Durability Analysis Results

Results are presented for the (3) most severe load cases.

*Note: Highly localized issues not considered a design limitation.

Requirement > 1.0
Forging Comparison

Baseline design

Contoured to the target minimum of 1.0 life

Highly localized issues not considered a design limitation

Forged design

Worst Case Condition
Forward Braking Load Case

1.1 (minimum)

1.2 (minimum)
Stamped Comparison

Durability Analysis

Worst Case Condition
- **Forward Braking Load Case**

Clamshell design
- Contoured to the target minimum of 1.0 life
- Results account for reduced fatigue properties in HAZ

I-Beam design
- 1.0 (minimum)
- 1.2
- 1.3
- 1.4

Great Designs in STEEL Seminar

www.autosteel.org
Results are presented for the (3) most severe load cases:

- Static Pothole-LHS Max Vert
- Static Pothole-LHS Max Fore/Aft
- Forward Braking#3

Permanent Set / Target Set

Baseline AL Forging: 0.00, 0.03, 0.00
Stamped Clamshell: 0.12, 0.00, 0.01
I-Beam w/ tubular flange: 0.01, 0.02, 0.00
Forged Steel: 0.19, 0.01, 0.00

Requirement < 1.0
Forged Comparison

Extreme Load Cases

LHS Pothole
Fore/Aft

Plastic strain (<4%)
Plotted to a maximum of 1% to show areas undergoing deformation

Baseline design

Von Mises stress
Contoured as a percent of the material yield strength

Forged design

www.autosteel.org
Stamped Comparison

Extreme Load Cases

LHS Pothole Fore/Aft

Plastic strain (<4%)
Plotted to a maximum of 1% to show areas undergoing deformation

Von Mises stress
Contoured as a percent of the material yield strength

Von Mises stress
Contoured as a percent of the material yield strength

Clamshell design

I-beam design
Longitudinal Strength

Longitudinal Load (25kN min.)

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Buckling Load / Target Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline AL Forging</td>
<td>1.12</td>
</tr>
<tr>
<td>Stamped Clamshell</td>
<td>1.17</td>
</tr>
<tr>
<td>I-Beam w/ tubular flange</td>
<td>1.23</td>
</tr>
<tr>
<td>Forged Steel</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Requirement: > 1.0

Buckling Load:
- Baseline AL Forging: 28.0 kN
- Stamped Clamshell: 29.3 kN
- I-Beam w/ tubular flange: 30.7 kN
- Forged Steel: 26.9 kN
Longitudinal Strength – Deformations

Baseline design

Clamshell design

Forged design

I-beam design
Mass Summary

Notes on steel designs: (1) Enable deletion of bushing bolt/washer. (2) Incorporate a weight-optimized ball joint.
Clamshell Design – Manufacturing

• Considerations
 – DP780 stamping feasibility
 – Butt welding

• Forming simulations
• Industry welding examples

Industry Example – Butt-Welded FLCA

Forming Simulation – DP780
I-Beam Design – Manufacturing

- Considerations
 - Tube bending
 - Weld fixtures

- Conventional tube bending process
- Simple stamped / blanked components with easily developed trim lines

Industry Examples – Tubes

Gooseneck decklid hinge

IP beam brackets
Forged Design – Manufacturing

- Considerations
 - Aggressive manufacturing target of 3mm minimum gage and associated manufacturing cost

- Industry examples represent current state-of-the-art
- Forging process simulation / optimization required
- Process-based component re-design / optimization

Industry Examples - Forged FLCAs
Cost

- Arm structure only
 - Aluminum FLCA baseline
 - includes washer & bolt, machining
 - Stamped clamshell
 - Fabricated tubular I-beam
 - Steel forging (insufficient data)

- Cost of manufacture only
 - 30k, 100k, and 250k vehicles per year (2 FLCAs per vehicle)
 - 6 year program
Cost

- **Variable costs**
 - Material / coating / E-coat
 - Purchased components
 - Machining labor & burden
 - Overhead
 - Capital
 - SG&A

- **Fixed costs**
 - Tooling (machining, stamping, welding, etc.)

- **Cost**
 - Total $ = variable $ + amortized fixed $

Relative Cost = \frac{\text{Cost}}{\text{Baseline Cost}}

Assumed material costs

<table>
<thead>
<tr>
<th>Material Type</th>
<th>No Coating</th>
<th>w/Galv 60G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>$3.36</td>
<td>n/a</td>
</tr>
<tr>
<td>HSLA 550</td>
<td>$0.95</td>
<td>$1.12</td>
</tr>
<tr>
<td>DP 780</td>
<td>$1.31</td>
<td>$1.47</td>
</tr>
<tr>
<td>DP 980</td>
<td>$1.42</td>
<td>$1.58</td>
</tr>
</tbody>
</table>
Cost Summary

Costs relative to baseline at 250,000 volume

- Alum baseline
- Clamshell
- I-Beam

Note: Insufficient data for forged design
Summary

- Two (2) sheet steel FLCA and one (1) forged FLCA designs were developed to determine the minimum mass while meeting and/or exceeding the structural performance of the baseline design.
- Manufacturing costs were estimated for each design, except for the forged design which requires a manufacturing feasibility study due to the assumed 3mm minimum gage target.

Great Designs in STEEL Seminar www.autosteel.org
Conclusions

- **Equivalent mass to the baseline assembly**
 - Up to 34% cost reduction potential
 - Deemed production feasible based on forming simulations and industry welding examples

- **Highest buckling resistance & high stiffness**
 - Up to 21% cost reduction potential
 - Deemed production feasible based on typical welding process development and industry tube bending examples

- **Highest stiffness & durability performance**
 - Aggressive 3mm minimum gage target
 - Forging industry to evaluate manufacturing feasibility and associated manufacturing costs

www.autosteel.org
Acknowledgements

• OEM Project Team
 – Jeremy Cadwell (Chrysler)
 – John Heimbecher (Chrysler)
 – Rick Turonek (Chrysler)
 – Doug Howe (Ford)
 – Raj Sohmshetty (Ford)
 – William Pinch (GM)
 – Richard Salmon (GM)

• Steel Project Team
 – David Anderson (AISI)
 – Roger Heimbuch (A/SP)
 – Ron Soldaat (ArcelorMittal)
 – Dick Grimes (GerdauMacSteel)
 – Dean Kanelos (Nucor)
 – Jackie Stachowski (Nucor)
 – Mark Kish (Republic Engineered Products)
 – Bob Vanhouten (Republic Engineered Products)
 – Raj Mohan (Severstal N.A.)
 – Stephanie Rothrauff (Timken)
 – Bart DePompolo (U.S. Steel)

• Multimatic Engineering Team
 – Bryan Conrod
 – Hannes Fuchs
 – Bob Howell
 – Chris Loo
 – Frank Tomassini

• Project Management
 – Eric McCarty (Materials Technology Consulting)

Special Thanks to the A/SP Benchmarking Team and Dr. Don Malen (University of Michigan)
Disclaimer

- This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FC26-02OR22910.

- This report was based upon work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
THANK YOU!

Multimatic Engineering
Corrosion

• To maintain OEM corrosion requirements, corrosion protection is applied to components based on material gage

• Sheet steel material gage limit (OEM specific):

 >~2.0mm: E-coat finish

 <~2.0mm: Hot dipped galvanized coating*

 + E-coat

*OEM specific, e.g. Hot Dip G60/G60 or Hot Dip Galvanneal A-40
Baseline Design

Design:
- Min web thickness 5.0 mm
- Flange thickness 10.0 mm
- Flange height 30.0mm (typ)
- Flange to web rads 7.0 mm
- 6° draft

Machined bushing sleeve, T-pin, and BJ housing
Clamshell Design

All components MIG welded (~1.20m weld length)
All components MIG welded (~1.35m weld length)
Forged Design

Design Assumptions:
- Min web thickness 2.8 mm
- Flange thickness 3.0 to 7.8 mm
- Flange height 10.0 to 30.0 mm
- Flange to web rads 3.0 mm
- 5° draft

Machined bushing sleeve and BJ housing

Bushing sleeve

T-pin

Ball joint housing

Section A-A
Materials

Material Stress-Strain Comparison

<table>
<thead>
<tr>
<th>Material</th>
<th>Engineering Stress [MPa]</th>
<th>Engineering Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP980</td>
<td>(σ_y=715MPa, σ_u=1,008 MPa)</td>
<td></td>
</tr>
<tr>
<td>T-Pin forging</td>
<td>(σ_y=760MPa, σ_u=1,124 MPa)</td>
<td></td>
</tr>
<tr>
<td>DP780</td>
<td>(σ_y=567MPa, σ_u=846 MPa)</td>
<td></td>
</tr>
<tr>
<td>HSLA550</td>
<td>(σ_y=550MPa, σ_u=620 MPa)</td>
<td></td>
</tr>
<tr>
<td>AISI 15V24 forging</td>
<td>(σ_y=646MPa, σ_u=878 MPa)</td>
<td></td>
</tr>
<tr>
<td>BJ forging</td>
<td>(σ_y=420MPa, σ_u=490 MPa)</td>
<td></td>
</tr>
<tr>
<td>DOM1020</td>
<td>(σ_y=414MPa, σ_u=483 MPa)</td>
<td></td>
</tr>
<tr>
<td>6082-T6 forged aluminum</td>
<td>(σ_y=310MPa, σ_u=340 MPa)</td>
<td></td>
</tr>
</tbody>
</table>
Materials

A/SP Sheet Material Selection

<table>
<thead>
<tr>
<th>Item</th>
<th>Steel Grade</th>
<th>Thickness (mm)</th>
<th>Grade</th>
<th>Yield (Mpa)</th>
<th>UTS (Mpa)</th>
<th>EL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIL 160/300</td>
<td>0.8</td>
<td>A60</td>
<td>140</td>
<td>270</td>
<td>33-44</td>
</tr>
<tr>
<td>2</td>
<td>MIL 140/270</td>
<td>0.8</td>
<td>A60</td>
<td>210</td>
<td>340</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>MIL 220/300</td>
<td>0.8</td>
<td>A60</td>
<td>200</td>
<td>370</td>
<td>22-36</td>
</tr>
<tr>
<td>4</td>
<td>IF 260/410</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>410</td>
<td>34-48</td>
</tr>
<tr>
<td>5</td>
<td>IF 260/80</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>39-54</td>
</tr>
<tr>
<td>6</td>
<td>IF 300/400</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>420</td>
<td>29-33</td>
</tr>
<tr>
<td>7</td>
<td>IF 300/400</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>420</td>
<td>29-33</td>
</tr>
<tr>
<td>8</td>
<td>HSLA 950/40</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>9</td>
<td>HSLA 950/40</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>10</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>11</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>12</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>13</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>14</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
<tr>
<td>15</td>
<td>IF 400/600</td>
<td>0.8</td>
<td>A60</td>
<td>260</td>
<td>400</td>
<td>29-36</td>
</tr>
</tbody>
</table>

Sources: WorldAutoSteel
Material modeling considerations

- Material fatigue property reduction in the weld HAZ for all steel grades per OEM modeling guidelines (durability load cases only)
- 20% material strength reduction in HAZ zone for high strength AHSS steel grades (e.g. DP980) (strength load cases only)
- AS/P recommendations for gage & grade selection
Longitudinal Strength – Peak Load

- **Baseline design (28.0 kN)**
- **Clamshell design (29.3 kN)**
- **Forged design (26.9 kN)**

Deflection Magnitude at Balljoint [mm] vs **Load Magnitude at Balljoint [N]**

- **Target - Longitudinal Buckling (25 kN)**
- **Baseline FLCA**
- **Clamshell Design (tr344)**
- **I-Beam Design (tr485)**
- **Forged Design (tr108)**

www.autosteel.org
Performance Summary

<table>
<thead>
<tr>
<th>Design</th>
<th>Baseline AL Forging</th>
<th>Stamped Clamshell</th>
<th>I-Beam w/ tubular flange</th>
<th>Forged Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image - Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>Base</td>
<td>Tr344</td>
<td>Tr485</td>
<td>Tr108</td>
</tr>
<tr>
<td>Material type</td>
<td>A6082-T6</td>
<td>DP780</td>
<td>SAE 550X, DP 980, DP 780</td>
<td>AISI 15V24</td>
</tr>
<tr>
<td>Stiffness (rigid bushings)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>2.9</td>
<td>1.00</td>
<td>1.10</td>
<td>1.24</td>
</tr>
<tr>
<td>Lateral</td>
<td>125.2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.19</td>
</tr>
<tr>
<td>Strength / Buckling Load Cases (nonlinear bushings, nonlinear material & geometry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal Buckling</td>
<td>25</td>
<td>1.12</td>
<td>1.17</td>
<td>1.23</td>
</tr>
<tr>
<td>Extreme Load / permanent set (nonlinear bushings, nonlinear material & geometry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Case Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static Pothole - LHS Max Vertical</td>
<td>1.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Static Pothole - LHS Max Fore/Aft</td>
<td>1.0</td>
<td>0.03</td>
<td>0.12</td>
<td>0.87</td>
</tr>
<tr>
<td>Forward braking #3</td>
<td>1.0</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Durability Analysis (distributed coupling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Braking</td>
<td>1.0</td>
<td>1.1*</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Braking Left/Right Turn</td>
<td>1.0</td>
<td>4.0</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Forward Impact</td>
<td>1.0</td>
<td>31</td>
<td>41</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Note: Highly localized issues not considered a design limitation
Mass Summary – Detail

<table>
<thead>
<tr>
<th>Design</th>
<th>Baseline AL Forging</th>
<th>Stamped Clamshell</th>
<th>I-Beam w/ tubular flange</th>
<th>Forged Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image - Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>Base</td>
<td>Tr344</td>
<td>Tr485</td>
<td>Tr108</td>
</tr>
<tr>
<td>Material type</td>
<td>A6082-T6</td>
<td>DP780</td>
<td>SAE 550X, DP 780, DP 780 tube</td>
<td>AISI 15V24</td>
</tr>
<tr>
<td>Mass Detail</td>
<td>(kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control arm only</td>
<td>1.48</td>
<td>1.69</td>
<td>1.71</td>
<td>1.91</td>
</tr>
<tr>
<td>Washer</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ride bush bolt</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Rivets</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Weld</td>
<td>0.00</td>
<td>0.04</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>FLCA w/ BJ housing & bolt</td>
<td>1.65</td>
<td>1.79</td>
<td>1.83</td>
<td>1.91</td>
</tr>
<tr>
<td>Ball joint internals*</td>
<td>0.36</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>FLCA w/ integrated Bj</td>
<td>2.01</td>
<td>2.03</td>
<td>2.06</td>
<td>2.14</td>
</tr>
<tr>
<td>Handling bush (A)</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Ride bush (B)</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Complete FLCA Assy</td>
<td>3.07</td>
<td>3.08</td>
<td>3.12</td>
<td>3.20</td>
</tr>
</tbody>
</table>

*Note: Steel designs incorporate a OEM component supplier provided weight optimized ball joint (-0.12kg); re-design of the baseline FLCA ball joint out of the scope of this project.

Note:
Steel design enables push-on style ride bushing which does not require 0.07kg bolt for retention.
Cost Summary

Costs relative to baseline at each volume

- Alum baseline
- Clamshell
- I-Beam

Note: Insufficient data for forged design
Clamshell Design – Manufacturing

Stamping Formability

Formability plot (crash form) – 1.90 mm DP780 stamping

Major strain contour plot, contoured to a maximum of 45%

trial 344
Great Designs in Steel is Sponsored by:

AK Steel Corporation, ArcelorMittal Dofasco, ArcelorMittal USA, Nucor Corporation, Severstal North America and United States Steel Corporation
Static Stiffness Analysis Results

- **Baseline AL Forging**: Longitudinal Stiffness: 2.9 kN/mm, Lateral Stiffness: 125 kN/mm
- **Stamped Clamshell**: Longitudinal Stiffness: 3.2 kN/mm, Lateral Stiffness: 125 kN/mm
- **I-Beam w/ tubular flange**: Longitudinal Stiffness: 3.6 kN/mm, Lateral Stiffness: 149 kN/mm
- **Forged Steel**: Longitudinal Stiffness: 3.6 kN/mm, Lateral Stiffness: 189 kN/mm

All values are compared to the Baseline AL Forging, with a requirement of >1.0.